RACF Performance Tuning

CHIRUG - December 2015
RSH Consulting, Inc. is an IT security professional services firm established in 1992 and dedicated to helping clients strengthen their IBM z/OS mainframe access controls by fully exploiting all the capabilities and latest innovations in RACF. RSH's services include RACF security reviews and audits, initial implementation of new controls, enhancement and remediation of existing controls, and training.

- www.rshconsulting.com
- 617-969-9050

Robert S. Hansel is Lead RACF Specialist and founder of RSH Consulting, Inc. He began working with RACF in 1986 and has been a RACF administrator, manager, auditor, instructor, developer, and consultant. Mr. Hansel is especially skilled at redesigning and refining large-scale implementations of RACF using role-based access control concepts. He is a leading expert in securing z/OS Unix using RACF. Mr. Hansel has created elaborate automated tools to assist clients with RACF administration, database merging, identity management, and quality assurance.

- 617-969-8211
- R.Hansel@rshconsulting.com
- www.linkedin.com/in/roberthansel
- http://twitter.com/RSH_RACF
Performance Objectives

- Optimize Access Authorizations
- Expedite the Logon Process
- Minimize I/O Operations
RACF Authorization Decision Logic

1. Resource Class Active (& RACLISTed if Required) → No → 4
 - Yes
 - PRIVILEGED or TRUSTED Started Task → Yes → 0
 - No
 - AUTH / FASTAUTH Pre/Post-Processing Exits ICHRcx01 - 02 / ICHRFX01 - 04 → Pass → 0
 - Fail → 8
 - No Action
 - Global Access Table - Requested ≤ Allowed Access → Yes → 0
 - No
 - Profile Found in Database (CDT DFTRETC=0/4/8 if No) → No → 4
 - Yes → 8
 - SECLEVEL, CATEGORY, & SECLABEL Match USERID → No → 4
 - Yes → User "Owns" the Resource
 - USERID = Dataset HLQ, Spool-Dataset, or VM Minidisk → Yes → 0
 - No
RACF Authorization Decision Logic

A

Not Auth

USERID in Access List - Requested ≤ Allowed Access

Not Listed

Group(s) in Access List - Requested ≤ Allowed Access

Not Listed

ID(*) in Access List - Requested ≤ Allowed Access

Not Listed

Requested Access ≤ UACC

No

OPERATIONS Authority Allows Access

Yes

No

USERID, Group(s), ID(*) PROGRAM, TERMINAL, CONSOLE, or JESINPUT in Conditional Access List - Requested ≤ Allowed Access

Not Listed

Profile in WARN Mode

Yes

0

0

0

0
RACF Authorization Decision Logic

- Deactivate unused classes (be mindful of POSITs when deactivating)
 - Resource classes, including SECDATA and SECLABEL classes
 - Global Access Table classes

- Make access list processing efficient
 - Minimize the number of entries in access lists
 - Grant end-user access via groups instead of USERIDs
 - Remove obsolete residual entries - run IRRRID00
 - Remove redundant entries (e.g., access allowed equals UACC)
 - Minimize the number of group connects per user

- Reduce reliance on OPERATIONS authority by implementing Storage Administration authorities

- Write efficient exit code

- Implement the Global Access Table
Global Access Table

- Performance enhancement tool
 - Grants immediate access to a resource without referring to its profile and without logging
 - Used to grant access to common shared resources

- GLOBAL Class
 - Profile - Class name [RDEF GLOBAL DATASET]
 - Members - resource/access [ADDMEM('CTLG.USER'/UPDATE)]
 - Resource
 - Discrete or Generic - follows generic profile rules for General Resources
 - Need not match profile(s) protecting the resource(s)
 - For datasets, if not enclosed in quotes, appends user's USERID as the first qualifier
 - Access-levels - ALTER | CONTROL | UPDATE | READ | NONE (not EXECUTE)

- Special Variables - Used in resource names
 - &RACUID Substitute with requesting user's USERID
 - &RACGPID Substitute with requesting user’s current connect group
Global Access Table

- **Sample entries**

<table>
<thead>
<tr>
<th>DATASET</th>
<th>&RACUID.*.**</th>
<th>ALTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATASET</td>
<td>&RACUID.*.**</td>
<td>UPDATE</td>
</tr>
<tr>
<td>DATASET</td>
<td>CATALOG.MASTER</td>
<td>READ</td>
</tr>
<tr>
<td>DATASET</td>
<td>CATALOG.USER</td>
<td>UPDATE</td>
</tr>
<tr>
<td>DATASET</td>
<td>ISPF.LIBRARY</td>
<td>READ</td>
</tr>
<tr>
<td>DATASET</td>
<td>SDSF.LIBRARY</td>
<td>READ</td>
</tr>
<tr>
<td>DATASET</td>
<td>SYS1.BROADCAST</td>
<td>READ</td>
</tr>
<tr>
<td>DATASET</td>
<td>SYS1.HELP</td>
<td>READ</td>
</tr>
<tr>
<td>DATASET</td>
<td>SYS1.MACLIB</td>
<td>READ</td>
</tr>
<tr>
<td>DATASET</td>
<td>SYS1.RACF</td>
<td>NONE</td>
</tr>
<tr>
<td>DATASET</td>
<td>SYS%.*</td>
<td>READ</td>
</tr>
<tr>
<td>DATASET</td>
<td>..PUBLIC.**</td>
<td>READ</td>
</tr>
<tr>
<td>DATASET</td>
<td>*.**.#SMSTEST</td>
<td>ALTER</td>
</tr>
<tr>
<td>FACILITY</td>
<td>ERBDSB.*</td>
<td>READ</td>
</tr>
<tr>
<td>FACILITY</td>
<td>IEC.TAPERING</td>
<td>READ</td>
</tr>
<tr>
<td>FACILITY</td>
<td>STGADMIN.ARC.ENDUSER.**</td>
<td>READ</td>
</tr>
<tr>
<td>JESJOBS</td>
<td>SUBMIT..&RACUID..&RACUID</td>
<td>READ</td>
</tr>
<tr>
<td>JESJOBS</td>
<td>CANCEL..&RACUID.</td>
<td>ALTER</td>
</tr>
<tr>
<td>JESSPOOL</td>
<td>..RACUID.**</td>
<td>ALTER</td>
</tr>
<tr>
<td>JESSPOOL</td>
<td>.JESNEWS.*</td>
<td>READ</td>
</tr>
<tr>
<td>MQQUEUE</td>
<td>MQS*.ISF.USER.&RACUID.*</td>
<td>ALTER</td>
</tr>
<tr>
<td>OPERCMDS</td>
<td>MVS.CANCEL.TSU.&RACUID</td>
<td>UPDATE</td>
</tr>
<tr>
<td>OPERCMDS</td>
<td>MVS.DISPLAY.*</td>
<td>READ</td>
</tr>
<tr>
<td>OPERCMDS</td>
<td>MVS.MCSOPER.&RACUID</td>
<td>READ</td>
</tr>
<tr>
<td>SDSF</td>
<td>ISFCMD.DSP.option.*</td>
<td>READ</td>
</tr>
<tr>
<td>TSOAUTH</td>
<td>JCL</td>
<td>READ</td>
</tr>
<tr>
<td>TSOAUTH</td>
<td>RECOVER</td>
<td>READ</td>
</tr>
</tbody>
</table>

(avoid - unintended access)

(precludes access)

(avoid - too broad)

(option: ACTIVE, HELD, OUTPUT)
Global Access Table

- Activated and managed via SETROPTS
 - SETROPTS GLOBAL(class) | NOGLOBAL(class) [REFRESH]
 - Must be refreshed if updated

- Can be used for most resource classes except ...
 - Not checked in RACROUTE REQUEST=FASTAUTH processing
 - Not checked in RACROUTE REQUEST=VERIFY processing for APPL, TERMINAL, JESINPUT, CONSOLE, APPCPPORT, and SERVAUTH resources

- Keep list of entries short and efficient to minimize search

- Drawbacks
 - Precludes logging (except SETR AUDIT(class) resource defines)
 - Undermines protection if allows more access than profile UACCs
RACF Profile Retrieval

- Data is written and retrieved in 4K blocks
- Individual profiles and profile segments can be greater than 4K in size and span multiple contiguous blocks, each of which requires I/O to fetch - keep profiles as small as possible
Resident Data Blocks (RDB)

- RACF maintains buffers in Extended Common Storage Area (ECSA) to cache copies of most recently used blocks (index, BAM, and profiles)
- RACF retrieves and stores a database block in an RDB before processing it
- Frequently used blocks tend to stay in these buffers (e.g., index blocks)
- Desired number of resident blocks is specified in the Database Name Table - ICHRDSNT

<table>
<thead>
<tr>
<th>AL1(1)</th>
<th>Number of databases</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL44’RACF.PRIMARY’</td>
<td>Primary DB name</td>
</tr>
<tr>
<td>CL44’RACF.BACKUP’</td>
<td>Backup DB name</td>
</tr>
<tr>
<td>AL1(100)</td>
<td># of Resident Data Blocks</td>
</tr>
<tr>
<td>XL1’xx’</td>
<td>Flags</td>
</tr>
</tbody>
</table>

- Default/minimum number of blocks
 - 10 / 0 Non-RACF-Sysplex (none for backup database)
 - 50 / 50 RACF-Sysplex (+ additional 20% for backup database)

- Maximum number - 255 (recommended)
Sets of **generic** profiles are cached in each individual user's address space memory

Each set is comprised of generic profiles for either:
- Dataset HLQ
- General Resource class

Upon first access to a resource class or HLQ, a **list** of all the associated generic profiles is retrieved and loaded into memory

Individual generic profiles are retrieved as needed for authorization checking and retained in memory thereafter

Profiles in memory are used for authorization checking - not those in the RACF database
Generic Profiles Stored In Memory

- Once all sets of generic profiles are filled, when the next new resource class or HLQ is accessed, the set with the least recently used profiles is dropped and replaced with the new one
 - Users accessing many different HLQs and/or general resources could experience thrashing (i.e. constant replacement) among the sets

- Dataset HLQs or general resources classes with many generic profiles take more I/O and CPU time to retrieve and load

- RACF can optionally keep up to 99 sets of profiles
 - Changed with the RACF operator command SET GENERICANCHOR(option)
 - Option can be configured for SYSTEM or JOBNAME(jobname jobname* ...)
 - Minimum/Default is 4
Generic Profiles Stored In Memory

- Additions or changes to generic profiles requires in-memory copies to be refreshed before they become effective by one of the following methods ...
 - User must logoff and logon to renew the in-memory profiles
 - User can execute a LISTDSD GENERIC command to refresh all profiles for the HLQ
 LISTDSD DA('HLQ.anything') GENERIC
 - SETROPTS GENERIC(class) REFRESH - this immediately drops all in-memory profile sets for the designated class for all active users and requires every user to reload them upon next access

- I/O is still required for ...
 - Datasets if the RACF indicator bit is on
 - General resources to check for a discrete profile before generics are checked

- Can avoid having to retrieve and load profiles into user memory by ...
 - Granting access using the Global Access Table
 - Loading profiles into memory using GENLIST and RACLIST
SETROPTS GENLIST and RACLIST

- Cause profiles to be stored in memory for rapid reference and to avoid I/O to the database
- Mutually exclusive SETROPTS options set for specific general resource classes
- Effects all classes with the same POSIT value
- GENLISTed and RACLISTed classes do not consume any of a user’s in-memory generic profile sets

- GENLIST(class)
 - Retrieval of first Generic profile prompts retrieval and storage of a list of all Generic profiles for the class in ECSA
 - Generic profiles are individually retrieved on first reference and retained in ECSA for subsequent reference
 - I/O still required to check for discrete profile
 - Class must be defined in the CDT with GENLIST=ALLOWED
 - Refreshed with SETROPTS GENERIC(class) REFRESH
 - Recommendation - use with VM related classes
RACLIST

- All profiles for a specified class are cached in a shared dataspace
 - `SETROPTS RACLIST(class)`, if RACLIST=ALLOWED in CDT
 - `RACROUTE REQUEST=LIST,GLOBAL=YES` by certain applications
 - CICS
 - IMS
 - VTAM
 - MQ
 - DB2
 - Updated with `SETROPTS RACLIST(class)` REFRESH
 - Profile segments are not stored in memory (e.g., STDATA)
 - Required to exploit grouping classes (e.g., DASDVOL / GDASDVOL)

- **CDT RACLREQ=YES - Required**

<table>
<thead>
<tr>
<th>Resource Managers</th>
<th>Data Space</th>
<th>RACF Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Req=AUTH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **RACLIST recommendations:**

<table>
<thead>
<tr>
<th>APPL</th>
<th>CDI</th>
<th>CONSOLE</th>
<th>DASDVOL</th>
<th>DIGT Classes</th>
<th>DSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACILITY</td>
<td>JES classes</td>
<td>LDAPBIND</td>
<td>LOGSTRM</td>
<td>MQCMDS</td>
<td>MQCONN</td>
</tr>
<tr>
<td>PRINTSRV</td>
<td>RRSFDATA</td>
<td>TSO classes</td>
<td>TERMINAL</td>
<td>SDSF</td>
<td>SURROGAT</td>
</tr>
</tbody>
</table>
RACGLIST Class

- Stores RACLISTed profiles in post-processed form for quick re-loading at IPL, upon initial RACROUTE REQUEST=LIST, and during REFRESH

- During RACLIST REFRESH for z/OS images sharing a database with Sysplex communications, first image fetches, merges, and stores a copy of processed member and grouping profiles for other images to simply retrieve and load

- Activated by class - profiles are class names
 - SETROPTS CLASSACT(RACGLIST)
 - RDEFINE RACGLIST class-name

- Especially beneficial for CICS, IMS, and DB2 classes

- Updated by SETROPTS RACLIST(class) REFRESH

- Ensure database has sufficient space for RACGLIST profiles

- Note: IPLs no longer cause refresh of RACGLISTed classes
Naming Convention Table

- Can be used to convert and restructure dataset names prior to RACF profile checking

- For example, could convert from/to

<table>
<thead>
<tr>
<th>Dataset Name</th>
<th>Converted To</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD.PAY</td>
<td>PAY.PROD</td>
</tr>
<tr>
<td>TAPE.PAY</td>
<td>PAY.TAPE</td>
</tr>
<tr>
<td>TEST.PAY</td>
<td>PAY.TEST</td>
</tr>
<tr>
<td>VSAMP.PAY</td>
<td>PAY.PRODV</td>
</tr>
<tr>
<td>VSAMT.PAY</td>
<td>PAY.TESTV</td>
</tr>
</tbody>
</table>

- Hard-coded Macro Table - ICHNCV00

- Benefits

 - Consolidating an application’s files under a common HLQ can reduce the number of generic profiles required to protect the data
 - Eliminating HLQs shared by several applications can reduce the I/O necessary to fetch all the different generic profiles
RACF Database Reorganization

- Over time, administrative actions have the following effect
 - Index entry additions and profile expansions fill a block to overflowing requiring a block split
 - Profile and segment deletions empty all but small percentage of some blocks, wasting both database and buffer space
 - Newly added profile segments (e.g., OMVS) get stored in different blocks than the related profile requiring more I/O to fetch, especially during logon
 - Creating and deleting profiles causes fragmentation of free space making it difficult for RACF to find contiguous blocks for storing large profiles

- IRRUT400 utility - reorganizes the database - run periodically
 - Aligns index and associated profile blocks in sequential order
 - Fills in data blocks eliminating wasted space and fragmentation
 - Optionally places all profile segments in same block when possible
 - Compresses the index and corrects upper level index errors
 - Optionally adds free space to index blocks for subsequent growth
 - Rebuilds BAM blocks, thereby eliminating any prior errors
RACF Database Placement

- Place on higher performance DASD devices
- Use cached control units or solid state devices where possible
- Provide device and channel separation between the Primary and Backup databases
- Use control units with multiple, redundant channels
- Place each database dataset on a separate volume
- Isolate the database datasets from other files or place them with infrequently accessed files
RACF Database Sharing

- Sharing a database in non-Sysplex Data Sharing mode (no Coupling Facility)
 - RACF uses exclusive hardware RESERVEs to serialize the database for most updates
 - System holding exclusive RESERVE locks out other systems until it has processed all its update requests
 - Lock is on entire DASD volume

- Global Resource Serialization (GRS)
 - Can convert RESERVEs to global ENQs
 - Each system given exclusive control for one update request at a time
 - Only locks the RACF database - not the entire DASD volume
 - Avoids contention and monopolization
 - PARMLIB(GRSRNLxx) conversion entry
 RNLDEF RNL(CON) TYPE(GENERIC) QNAME(SYSZRACF)
 - Restrictions
 - All z/OS systems must be part of the same GRS complex
 - Cannot be used when sharing a RACF database with a z/VM system
 - GRS required for Sysplex Data Sharing
RACF Sysplex Data Sharing

- Uses Coupling Facility as large store-through cache for the Resident Data Blocks - caches ICB, index, and profile data blocks (can improve performance for single system)

- Enabled by ICHRDSNT flag on first database entry
 - XL1’x0’ No Sysplex
 - XL1’x8’ RACF-Sysplex data communication without data sharing
 - XL1’xC’ RACF-Sysplex data communication with data sharing

- Coupling Facility Resource Manager (CFRM) sets cache policy

- To assist in calculating the coupling facility size for RACF, go to http://www.ibm.com/systems/support/z/cfsizer/racf/

- If feasible, specify size large enough to hold all index blocks plus all data blocks for non-RACLISTed resource classes
RACF Database Split

- Divides database into multiple subset databases
 - Maximum: z/OS - 90, z/VM - 4
- ICHRNG - RACF Range Table (resides in LPA)

<table>
<thead>
<tr>
<th>TABLE ENTRY</th>
<th>PROFILE PREFIXES</th>
<th>DATABASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F’5’ (# of ranges)</td>
<td>$ - B</td>
<td>1</td>
</tr>
<tr>
<td>XL44’0000000000,AL1(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL1’C’,XL43’00’,AL1(2)</td>
<td>C - GCICTRM</td>
<td>2</td>
</tr>
<tr>
<td>CL8’GCICSTRN’,XL36’00’,AL1(1)</td>
<td>GCICTRN - M</td>
<td>1</td>
</tr>
<tr>
<td>CL1’N’, XL43’00’,AL1(2)</td>
<td>N - TAPVOK</td>
<td>2</td>
</tr>
<tr>
<td>CL7’TAPEVOL’,XL37’00’,AL1(1)</td>
<td>TAPEVOL - 9</td>
<td>1</td>
</tr>
</tbody>
</table>

- Requires multiple entries in ICHRDSNT table

 | AL1(2) | Number of databases |
 | CL44’RACF.PRIMARY1’ | Primary DB name |
 | CL44’RACF.BACKUP1’ | Backup DB name |
 | AL1(255) | # of Resident Data Blocks |
 | XL1’xx’ | Flags |
 | CL44’RACF.PRIMARY2’ | Primary DB name |
 | CL44’RACF.BACKUP2’ | Backup DB name |
 | AL1(100) | # of Resident Data Blocks |
 | XL1’xx’ | Flags |
RACF Database Split

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>DB#1</th>
<th>DB#2</th>
<th>DB#3</th>
<th>DB#4</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>% FULL</td>
<td>7</td>
<td>16</td>
<td>37</td>
<td>0</td>
<td>Ave 15</td>
</tr>
<tr>
<td>GROUP</td>
<td>342</td>
<td>2440</td>
<td>261</td>
<td>0</td>
<td>3048</td>
</tr>
<tr>
<td>USER</td>
<td>5264</td>
<td>8281</td>
<td>12419</td>
<td>135</td>
<td>25971</td>
</tr>
<tr>
<td>DATASET</td>
<td>1540</td>
<td>2404</td>
<td>10860</td>
<td>23</td>
<td>14827</td>
</tr>
<tr>
<td>TERMINAL</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>APPL</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>DSNR</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>FACILITY</td>
<td>0</td>
<td>61</td>
<td>0</td>
<td>0</td>
<td>61</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>TSOPROC</td>
<td>0</td>
<td>102</td>
<td>0</td>
<td>0</td>
<td>102</td>
</tr>
<tr>
<td>ACCTNUM</td>
<td>0</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>OMCANDLE</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>GCICSTRN</td>
<td>0</td>
<td>0</td>
<td>319</td>
<td>0</td>
<td>319</td>
</tr>
<tr>
<td>GDFHTEST</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>269</td>
<td>269</td>
</tr>
<tr>
<td>TSOCMDS</td>
<td>0</td>
<td>276</td>
<td>0</td>
<td>0</td>
<td>276</td>
</tr>
<tr>
<td>... Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL:</td>
<td>16404</td>
<td>31427</td>
<td>79135</td>
<td>447</td>
<td>127413</td>
</tr>
</tbody>
</table>
RACF Database Split

- **Advantages**
 - Spread workload across devices
 - Increase resident data blocks - up to 255 for each database dataset
 - Reduce index levels - ICHRRNG acts as the highest level index
 - Additional I/O queues - one for each database - reduces impact of exclusive enqueues

- **Disadvantages**
 - More databases to manage - must unload, backup, and reorganize them individually
 - Requires entire Sysplex IPL to change

- **Planning Considerations**
 - Profile naming conventions - determines profile placement
 - Spread heavily used profiles and resource classes evenly across the databases
 - Factor in effects of GAT, GENLIST, RACLIST, and RACGLIST
 - Avoid large numbers of ranges - do not exceed 750
Logging

- Use the following logging options only when necessary for essential security oversight
 - SETROPTS LOGOPTIONS(ALWAYS(class) | SUCCESSES(class))
 - SETROPTS OPERAUDIT
 - Resource AUDIT(SUCCESSES(READ))
 - Resource GLOBALAUDIT(SUCCESSES(READ))
 - User UAUDIT
 - Problematic if user makes extensive use of Unix File System objects
Statistics

- Eliminate the collection of resource access statistics
 - SETROPTS STATISTICS(class) | NOSTATISTICS(class) Option
 - Access counts kept only on Discrete profiles
 - Not incremented for GAT permitted access or RACLISTed class profiles
 - May not be accurate in a shared database environment
 - Increases CPU processing to calculate and I/O to record

- Update Statistics in the backup database as needed - ICHRDSNT flag
 - XL1’0x’ No updates are duplicated in the backup database (default)
 - XL1’8x’ Updates other than statistics are duplicated (recommended)
 - XL1’Cx’ Updates including statistics are duplicated (avoid)

- Limit user logon statistics updates to only once per day
 - Implemented via APPL class profiles for associated applications
 - Specify APPLDATA('RACF-INITSTATS(DAILY)') to activate
z/OS UNIX Identity Mapping

- Mapping required when corresponding identity must be determined (e.g., Unix 'ls' command - display RACF USERID and Group for Unix Owner UID and Group GID)

- Options to avoid searching all user and group OMVS segments for each look-up request
 - UNIXMAP Class
 - Contains profiles in the form Unnn and Gnnn, where 'nnn' is a UID or GID
 - Users and groups are 'permitted' access to signify UID and GID assignment
 - Profiles are automatically maintained when OMVS segments are created or altered via RACF commands
 - Class must be activated to be used for mapping
 - Application Identity Mapping (AIM)
 - Restructured database with mapping index structure
 - Implemented using IRRIRA00 utility
 - Replaces UNIXMAP profiles
 - Enables use of UID(nnn) and GID(nnn) on SEARCH command
 - Required to use newest features to replace the Unix Default User

- Additionally, cache UID and GID mappings in VLF
Virtual Lookaside Facility (VLF)

- VLF can cache RACF information for reuse
 - Accessor Environment Elements (ACEEs)
 - Group tree
 - z/OS Unix mappings of UIDs and GIDs to USERIDs and Groups
 - z/OS Unix User Security Packets (USPs)

- MAXVIRT parameter - VLF Maximum Virtual Storage
 - Optionally specified in PARMLIB(COFVLFxx) for each VLF CLASS
 - MAXVIRT(nnnnnn) - 4K block increments
 - Default: 4096
 - Range: 256 - 524288
 - Monitor VLF use - SMF record type 41, subtype 3
 - Default normally sufficient
Virtual Lookaside Facility (VLF)

- **Accessor Environment Elements (ACEEs)**
 - Created during logon process - contains user's attributes, lists of groups, and logon characteristics (e.g., Point-of-Entry (POE), application)
 - Caching avoids repeated retrieval of user profile for subsequent logons
 - PARMLIB(COFVLFxx) entry
 - CLASS NAME(IRRACEE)
 - EMAJ(ACEE)
 - Most changes to a user profile causes purge of some or all cached ACEEs for that user
 - Refresh of certain classes causes purge of **all** cached ACEEs
 - APPCPORT
 - APPL
 - CONSOLE
 - JESINPUT
 - SERVAUTH
 - TERMINAL

- **Group tree**
 - Used to determine scope-of-groups for Group-level authorities
 - SPECIAL
 - OPERATIONS
 - AUDITOR
 - Caching avoids repeated retrieval of group profiles and tree reconstruction
 - Implement only if group authority is used extensively
 - PARMLIB(COFVLFxx) entry
 - CLASS NAME(IRRGTS)
 - EMAJ(GTS)
Virtual Lookaside Facility (VLF)

- z/OS Unix mappings of UIDs and GIDs to USERIDs and Groups
 - Caching avoids repeated retrieval of mapping information
 - Needed even with AIM restructured database
 - PARMLIB(COFVLFxx) entry
 CLASS NAME(IRRGMAP)
 EMAJ(GMAP)
 CLASS NAME(IRRUMAP)
 EMAJ(UMAP)

- z/OS Unix User Security Packets (USPs)
 - Created when user dubs (invokes z/OS Unix function)
 - Caching avoids repeated rebuilding of USPs during subsequent dubbing
 - Especially helpful for applications using thread level security
 - PARMLIB(COFVLFxx) entry
 CLASS NAME(IRRSSMAP)
 EMAJ(SMAP)
Enqueue Residency - ERV

- Contention issue - low priority TSO user or batch job gets swapped out while still holding an enqueue on SYSZRACF or a hardware RESERVE on the RACF database volume, and thereby holds up other address spaces and systems waiting on RACF

- Solution - grant more CPU Service Units to address spaces enqueued on system resources or holding hardware RESERVEs enabling them to complete work before being swapped out

- PARMLIB(IEAOPTxx) - ERV parameter
 - Range: 0 - 999999
 - Default: 500
 - Recommended: 40000 - 50000
Storage Administration

- Use Storage Administration related authorities in lieu of individual dataset access and OPERATIONS authority

- DASDVOL profiles
 - Perform backups and restores on entire non-SMS managed DASD volumes without checking access for each dataset

- FACILITY STGADMIN.ADR.STGADMIN.command
 - Allows use of ADMINistrator keyword on ADRDSSU utility jobs
 - Allows backups, restores, compresses, etc. on all target datasets without checking access for each dataset

- FACILITY STGADMIN.ARC .hsm-command (not .ENDUSER and H-commands)
 - Allows DFSMS/HSM migration actions on all target datasets without checking access for each dataset
Avoid use of commands and utilities that are I/O or processing intensive during peak system activity periods (especially morning logon)

- LU *
- LG *
- RL class *
- LD with ID(), PREFIX(), or DSNS
- SR with NOMASK, AGE, USER, or WARNING
- SETROPTS GENERIC(class) REFRESH - especially DATASET
- SETROPTS RAclist(class) REFRESH - especially classes with many profiles
- Large batches of commands - especially CONNECTs and REMOVEs
- IRRUT100 IRRUT200 IRRUT400 BLKUPD
- ICHDSM00 with FUNCTION RACGRP or RACUSR
- IRRDBU00 using live RACF database (use off-line IRRUT200 backup instead)
- RACF admin product extracts using live RACF database (use backup instead)

Specify parameter NOYOURACC (or NOY) on RLIST commands to avoid retrieval and RAclist processing of all grouping class profiles simply to determine your access
Miscellaneous

- Keep the RACF database clean of unnecessary permissions and obsolete USERIDs, groups, and resource profiles
 - Avoids wasted space in data blocks and cache
 - Reduces processing for IRRDBU00 unload and RACF admin product extracts

- **CICS - System Initialization Table (SIT) parameters**
 - `Xres=NO` - deactivate authorization checks for unused resource classes (e.g., XJCT)
 - `USRDELAY=30 | #minutes`
 - Determines life of user ACEEs built by RACROUTE VERIFY for ATTACHSEC(IDENTIFY) in an Application Owning Region (AOR) for routed transactions initiated by users logged on to a Terminal Owning Region (TOR)
 - If set too short can cause frequent rebuilding of ACEEs
 - `z/OS 1.11 + CICS TS 4.1` - CICS is notified of user profile changes and immediately purges the ACEE so that it can be recreated; enables longer USRDELAY to be set
CA-Endevor

- Cache RACF access authorization decisions for each user during an Endevor session
- BC1TNEQU security table parameter - LATSIZE=nnn
 - nnn = 0 - 524287 4k blocks - each block holds approximately 35 access authorizations
 - LATSIZE=0 - disables caching (default)
 - Recommended minimum - 10
- Once cache is full, access requests not found in the cache require a RACROUTE call